Title: New Research Sheds Light on the Devastating Effects of the Chicxulub Impact
Subtitle: Scientists simulate the conditions following the impact of the Chicxulub asteroid to better understand its catastrophic consequences
Date: [Insert Date]
Byline: [Author Name]
In a groundbreaking study, scientists have conducted a series of experiments to simulate the conditions that occurred after the impact of the Chicxulub asteroid, shedding new light on the devastating effects of this cataclysmic event. The Chicxulub impact, which occurred approximately 66 million years ago, is widely believed to have caused the extinction of the dinosaurs and had a profound impact on life on Earth.
The research, which focused on the formation of shockwaves and the expanding cloud of vaporized material, provides crucial insights into the speed and magnitude of the atmospheric disturbances that followed the impact. The collision of the approximately 8 trillion-ton asteroid, with a volume of around 2,600 km3, at a speed of approximately 20 km/s, resulted in an explosion equivalent to about 300 million megatons of TNT and created the Chicxulub crater, measuring 180 to 240 kilometers in diameter. This event stands as one of the largest catastrophes in the history of life on Earth and likely represents the largest collision between Earth and an extraterrestrial body in the past several hundred million years.
The study confirms that no organism within hundreds of kilometers could have survived the aftermath of this event. However, it also explores the accompanying phenomena of the impact and identifies the first riders of the apocalypse. Aside from the blinding light caused by the asteroid’s passage through the Earth’s atmosphere, the most immediate form of destruction was the impact itself and the subsequent shockwave, which rapidly propagated in all directions from the impact site. But what was the actual speed of this shockwave? According to Charles Frankel’s book “The End of the Dinosaurs,” published in 1999, this colossal atmospheric disturbance initiated its expansion at a speed close to that of the impacting body, approximately 20 km/s (72,000 km/h).
However, within a few minutes, the speed significantly decreased as the expanding ring of air encountered larger atmospheric masses. Within approximately 10 minutes after impact, the speed of this deadly “wind” dropped below 1,000 km/h (approximately the speed of sound), with its outer edge located approximately 500 kilometers from the impact site. After about an hour, the distance covered by this “ring of destruction” reached 1,000 kilometers, while the speed of the expanding air still exceeded that of the most powerful hurricanes recorded by humans. Within this range, practically all larger, unprotected animals were killed, and the majority of surface vegetation was devastated. This was just one of many manifestations of destruction, accompanied by seismic waves, tektite showers, lethal infrared radiation, impact megatsunamis, and more. According to a scientific paper published in 1997, the area devastated within this range extended from 900 to 1,800 kilometers from the impact site.
In their book “Chicxulub: The Impact and Tsunami,” published in 2017, authors David Shonting and Cathy Ezrailson describe the conditions approximately 400 kilometers from the impact site. They state that after about 2 minutes, an extremely powerful earthquake would have been felt, followed by two devastating atmospheric pressure waves after 20 to 25 minutes. The first wave would resemble an incredibly strong aerodynamic shock, followed by extremely powerful tornado-like vortices, reaching speeds of around 350 m/s (1,260 km/h) just a few seconds later.
Surviving such devastation would have been nearly impossible, even in an underground nuclear shelter, especially near the impact site and considering the perspective of the impact’s long-lasting, drastic effects. Estimates of the intensity of many of these phenomena vary significantly across the literature, as illustrated in Douglas Henderson’s beautifully illustrated book “Asteroid Impact” from 2000. The author suggests that the expanding cloud of vaporized material had a speed of approximately 18 miles per second, or about 29 km/s (assuming an incorrect assumption that the impact occurred at a speed of 60,000 miles per hour, or 96,600 km/h).
To gain a better understanding of the likely appearance and changes of these atmospheric effects following the actual impact, a controlled laboratory experiment was conducted at the turn of the decade. The experiment involved laser ablation of target rock, specifically carbonate obtained directly from one of the Chicxulub crater drill cores. The experiment took place under simulated Late Cretaceous atmospheric conditions, with a composition of 0.16% CO2, 30% O2, and 69.84% N2 at a pressure of 1 bar and a temperature of 25 °C.
By high-speed imaging the propagation of shockwaves and the expanding cloud of vaporized material, scientists gained valuable insights into the likely appearance and transformations of these atmospheric effects following the impact. The chemical composition and physical properties of the target rock played a crucial role in determining the characteristics of the shockwaves and the expanding cloud.
This research represents a significant step forward in our understanding of the catastrophic consequences of the Chicxulub impact. By simulating the conditions that occurred after the impact, scientists have provided valuable insights into the speed, magnitude, and nature of the atmospheric disturbances that followed this monumental event. The findings contribute to our knowledge of the Earth’s history and the impact of extraterrestrial bodies on our planet, ultimately helping us better understand the dynamics of our own existence.text-link” href=”https://dinosaurusblog.com/2021/03/29/jak-velky-je-krater-chicxulub/” rel=”noopener”>oblaku také rychlosti, které byly naměřeny. Výsledky experimentu ukázaly, že rychlost expandujícího oblaku se pohybovala kolem 10 km/s (36 000 km/h), což je nižší hodnota než byla dříve odhadována. Rázová vlna se pak šířila rychlostí přibližně 3 km/s (10 800 km/h).
Tyto nové poznatky jsou důležité pro lepší porozumění dopadu planetky na Zemi a jeho následkům. Přesnější informace o rychlostech a chování rázové vlny a expandujícího oblaku mohou pomoci při modelování a simulacích podobných událostí a při předpovídání jejich dopadu na život na naší planetě.
Studie byla publikována v časopise Journal of Geophysical Research: Planets a představuje další krok vpřed v našem poznání o katastrofických událostech, které ovlivnily vývoj života na Zemi.
). Tyto vlny by způsobily masivní destrukci ve svém okolí a zcela zničily veškeré životní formy v dosahu.
Dalším průvodním jevem bylo pršení tektitů, což jsou malé skleněné kuličky vytvořené při impaktní explozi. Tyto kuličky byly vymrštěny do atmosféry a poté se vrátily zpět na zem, kde způsobily další škody.
Dalším nebezpečím byla smrtící infračervená radiace, která byla vyzařována z rozžhaveného materiálu v kráteru Chicxulub. Tato radiace by způsobila smrt všem živým organismům v okolí.
A konečně, impaktní megacunami byla dalším ničivým jevem. Tyto obrovské vlny byly vyvolány nárazem tělesa do oceánu a způsobily obrovské záplavy a zničení pobřežních oblastí.
Celkově lze říci, že dopad tělesa na Zemi před 66 miliony lety způsobil obrovskou katastrofu a měl dlouhodobé dopady na život na naší planetě. Tato událost je důležitá pro pochopení vývoje života na Zemi a ukazuje, jak zranitelná je naše planeta vůči kosmickým událostem.
How did the Chicxulub impact shape the Earth’s climate and ecosystem in the long term?
New Study Reveals the Devastating Effects of the Chicxulub Impact
Scientists Uncover the Catastrophic Consequences of the Chicxulub Asteroid Collision