Title: New Research Sheds Light on the Devastating Effects of the Chicxulub Impact
Subtitle: Scientists simulate the conditions following the impact of the Chicxulub asteroid to better understand its catastrophic consequences
Date: [Insert Date]
Byline: [Author Name]
In a groundbreaking study, scientists have conducted a series of experiments to simulate the conditions that occurred after the impact of the Chicxulub asteroid, shedding new light on the devastating effects of this cataclysmic event. The Chicxulub impact, which occurred approximately 66 million years ago, is widely believed to have caused the extinction of the dinosaurs and had a profound impact on life on Earth.
The research, which focused on the formation of shockwaves and the expanding cloud of vaporized material, provides crucial insights into the speed and magnitude of the atmospheric disturbances that followed the impact. The collision of the 8 trillion-ton asteroid, with a volume of around 2,600 km3, at a velocity of approximately 20 km/s, resulted in an explosion equivalent to about 300 million megatons of TNT and created the Chicxulub crater, measuring 180 to 240 kilometers in diameter. This event stands as one of the largest catastrophes in the history of life on Earth and likely represents the largest collision between Earth and an extraterrestrial body in the past several hundred million years.
The study confirms that no organism within hundreds of kilometers could have survived the immediate aftermath of the impact. However, it also explores the accompanying phenomena of the impact and identifies the first riders of the apocalypse. Aside from the blinding light caused by the asteroid’s entry into the Earth’s atmosphere, the most rapid form of destruction was the impact itself and the subsequent shockwave, which began to propagate from the impact site at an enormous speed. According to Charles Frankel’s book “The End of the Dinosaurs,” this colossal atmospheric disturbance initiated its expansion at a speed close to that of the impacting body, approximately 20 km/s (72,000 km/h).
Within a few minutes, the speed of the shockwave significantly decreased as the expanding ring of air encountered larger atmospheric masses. Approximately 10 minutes after impact, the speed of this deadly “wind” dropped below 1,000 km/h (approximately the speed of sound), with its edge already approximately 500 kilometers from the impact site. After about an hour, the distance covered by this “ring of destruction” reached 1,000 kilometers, while the speed of the expanding air still surpassed the strongest hurricanes recorded by humans. Within this range, practically all larger, unprotected animals were killed, and the majority of surface vegetation was devastated. This was just one of many manifestations of destruction, accompanied by seismic waves, tektite showers, lethal infrared radiation, impact megatsunamis, and more. According to a scientific paper from 1997, the area within a distance of 900 to 1,800 kilometers from the impact site was completely devastated.
In their book “Chicxulub: The Impact and Tsunami” published in 2017, authors David Shonting and Cathy Ezrailson describe the effects of the impact at a distance of 400 kilometers from the epicenter. They state that after approximately 2 minutes, an extremely powerful earthquake would have been felt, followed by two devastating atmospheric pressure waves after 20 to 25 minutes. The first wave would have been an incredibly strong aerodynamic shock, followed by extremely powerful tornado-like vortices, reaching speeds of around 350 m/s (1,260 km/h) just a few seconds later.
Surviving such devastation would have been nearly impossible, even in an underground nuclear shelter, especially near the impact site and considering the perspective of the impact’s long-lasting devastating effects. Estimates of the intensity of many of these phenomena vary significantly across the literature, as illustrated in Douglas Henderson’s beautifully illustrated book “Asteroid Impact” from 2000. The author suggests that the expanding cloud of vaporized material had a speed of approximately 18 miles per second, or about 29 km/s (assuming an incorrect assumption that the impact occurred at a speed of 60,000 miles per hour, or 96,600 km/h).
To gain a better understanding of the likely appearance and changes of these atmospheric effects following the impact, a controlled laboratory experiment was conducted at the turn of the decade. The experiment involved laser ablation of a carbonate target, obtained directly from one of the drill cores from the Chicxulub crater. The experiment took place under simulated Late Cretaceous atmospheric conditions, with a composition of 0.16% CO2, 30% O2, and 69.84% N2 at a pressure of 1 bar and a temperature of 25 °C.
By high-speed imaging the propagation of the shockwave and the expanding cloud of vaporized material, scientists gained valuable insights into the likely appearance and transformations of these atmospheric effects following the actual impact. The chemical composition and physical properties of the target material played a crucial role in determining the characteristics of the shockwave and the expanding cloud.
This research represents a significant step forward in our understanding of the devastating consequences of the Chicxulub impact. By simulating the conditions that occurred after the impact, scientists have provided valuable insights into the speed, magnitude, and nature of the atmospheric disturbances that followed this catastrophic event. The findings contribute to our knowledge of the Earth’s history and the impact of extraterrestrial bodies on our planet, highlighting the importance of continued research in this field.text-link” href=”https://dinosaurusblog.com/2021/03/29/jak-velky-je-krater-chicxulub/” rel=”noopener”>oblaku také rychlosti, které byly naměřeny. Výsledky experimentu ukázaly, že rychlost expandujícího oblaku se pohybovala kolem 10 km/s (36 000 km/h), což je nižší hodnota než byla dříve odhadována. Rázová vlna se pak šířila rychlostí přibližně 3 km/s (10 800 km/h).
Tyto nové poznatky jsou důležité pro lepší porozumění dopadu planetky na Zemi a jeho následkům. Přesnější informace o rychlostech a chování rázové vlny a expandujícího oblaku mohou pomoci při modelování a simulacích podobných událostí a při předpovídání jejich dopadu na život na naší planetě.
Studie byla publikována v časopise Journal of Geophysical Research: Planets a představuje další krok vpřed v našem poznání o katastrofických událostech, které ovlivnily vývoj života na Zemi.
). Tyto vlny by způsobily masivní destrukci ve svém okolí a zcela zničily veškeré životní formy v dosahu.
Dalším průvodním jevem bylo pršení tektitů, což jsou malé skleněné kuličky vytvořené při impaktní explozi. Tyto kuličky byly vymrštěny do atmosféry a poté se vrátily zpět na zem, kde způsobily další škody.
Dalším nebezpečím byla smrtící infračervená radiace, která byla vyzařována z rozžhaveného materiálu v kráteru Chicxulub. Tato radiace by způsobila smrt všem živým organismům v okolí.
A konečně, impaktní megacunami byla dalším ničivým jevem. Tyto obrovské vlny byly vyvolány nárazem tělesa do oceánu a způsobily obrovské záplavy a zničení pobřežních oblastí.
Celkově lze říci, že dopad tělesa na Zemi před 66 miliony lety způsobil jednu z největších katastrof v historii planety. Zničil veškerý život v okolí a měl dlouhodobé dopady na klima a ekosystémy. Studium tohoto impaktu nám pomáhá lépe porozumět minulosti naší planety a také nám dává důležité informace pro budoucnost.
How do the insights gained from the study enhance our understanding of the long-term consequences of an asteroid collision
“New Study Reveals the Catastrophic Effects of the Chicxulub Impact: Scientists Gain Insights into the Devastating Consequences of the Asteroid Collision”